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Note 

Use of Implicit and Explicit Flux-Corrected 
Transport Algorithms in Gas Discharge Problems 

Involving Non-uniform Velocity Fields 

1. INTRODUCTION 

In many applications of numerical methods to gas discharge theory, the electric 
field changes rapidly with position [ 1,2]. Therefore it is essential to solve the con- 
tinuity equations for the electrons and ions accurately because space-charge effects 
dominate the electric fields, and hence the velocity distribution in the gas. Although 
transport algorithms are often used in such cases they are seldom tested for 
accuracy in the presence of a spatially varying velocity field. In the cases where such 
a test has been attempted, an exact solution has not been used for quantitative 
comparison [3,4]. In this paper we present the exact solution for the case of a 
velocity field varying linearly with distance, which can be used to test the accuracy 
of any algorithm. 

The basic equation we wish to solve is 

where p is density, w is the drift velocity, x is position and t is time. A critical 
parameter in the solution of this equation is the Courant number c = 6t. w/6x, 
where 6t is the time step and 6x the mesh space. 

The algorithms tested are the explicit Phoenical LPE SHASTA algorithm [S] 
and a newly developed implicit FCT algorithm using a fourth-order scheme [6]. 
For Courant number c > 1 the fourth-order scheme employs a marching method 
[6], while for c < 1 a tri-diagonal matrix of coefficients is solved. 

For a numerical test we use both square and semi-circular wave-forms [6] 
propagating in the presence of a velocity field that varies linearly with distance. The 
changes in the shapes of the wave-forms obtained by using two representative FCT 
algorithms are compared with the analytic solution obtained by the method of 
characteristics. 
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2. DESCRIPTION OF METHODS 

The Phoenical LPE SHASTA method [S] is an explicit method which gives 
non-negative results only for c < 0.5 in the presence of a non-uniform velocity field. 
We use the form of the LPE SHASTA algorithm described in detail by Morrow 
and Cram [4]. 

In a recent paper [6] we presented a fourth-order space- and time-centered 
scheme which was used as the high-order scheme for an FCT algorithm. The 
fourth-order scheme has the following form with a uniform mesh in a non-uniform 
velocity field, 

(2 - 3Cjp I/* + Cyp 112) Pj.. 1 + (8 + 3C,+ 112 - 3cj- I/z- Cf+ I/2- Cfp 112) fij 
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where cj+ 112 = atw., + w/h wj+ 112 is the velocity at the cell boundary between mesh 
points j and j+ 1, 6t is the time step, 6x is the mesh space, pi is the high-order 
solution at time level n + 1 and mesh point j, and pr is the solution at time level 
n at mesh point j. 

From Eq. (2) we can derive the high-order flux 

Cj+ l/2 
+~(pi+l+Pj+P~+l+PJ)' (3) 

For non-uniform positive velocities we can use upwind difference for the low-order 
solution 

bj = Pr - cj+ 112 P.y+ cjp I/2 P7- 19 

where pj is the low-order solution at time level n + 1 and mesh point j. 
Thus the low-order flux is 

4” J+ 112 = cj+ 112 P7 

and the anti-diffusive flux is then 

(4) 
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Equation (2) can be solved as a tri-diagonal matrix for c < 1, but for c > 1 we must 
use a recursion relation [6] defined by solving Eq. (2) for pj+, in terms of the other 
densities. For c > 1 we can use multiple upwind steps in order to derive the 
low-order solution (see Steinle and Morrow [6]). 

Once the high- and low-order solutions are known, the antidiffusive fluxes can be 
determined by computing in the direction of the flow, away from the upstream 
boundary, the anti-diffusive flux 

This is the most rapid method of computing the antidiffusive fluxes, for all c. 
Once the anti-diffusive have been obtained they must be limited to prevent the 

development of unwanted maxima and minima using either Boris and Book’s 
limiter [5] or Zalesak’s limiter [7]. We find little difference between the two 
methods. Here we use the more efficient Boris and Book limiter to produce the 
corrected fluxes, $j + ,,*, which are then applied to give the final solution 

where pj ‘+ ’ is the final solution at time t + 6t and mesh point j. 
The remaining problem is that we have one method of solution for c > 1 and a 

different method for c < 1, and we must match the two methods of solution about 
the transition point where c = 1. Note that we need only consider the case where 
c > 0, as the case where c 6 0 can be derived by symmetry. 

When a transition is required in a region of decreasing c the solution may be 
marched to the transition point, then the transition point is used as a boundary 
condition for the tridiagonal system of equations used for c < 1. For the alternate 
case we use the upwind solution to close the system of equations. It is generally 
found that the overall accuracy of a scheme is not affected by using the low-order 
method at one point. 

Using the above method the transition from one method of solution to the other 
can be achieved without any distortion. 

3. RESULTS AND DISCUSSION 

3.1. Analytic Solution in a Linear Velocity Field 

If we assume a linear variation of velocity with position of the form 

w=k(d-x), (9) 

where k and d are constants, then by considering the solution of Eq. (1) along 
characteristics, one can show that an initial distribution of the form 

Ph 0) = P,(X) (10) 
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becomes 
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p(x, t) = po( (x - d) ekr + d) ekr. (11) 

We can thus predict the change in the shape of any initial waveform with time in 
a linearly varying velocity field and we use this as a basis for testing the accuracy 
of numerical solution for both square and semi-circular waveforms. 
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FIG. 1. The square-wave test with a decreasing velocity field: (a) The fourth-order method with c 
varying from c= 1 at cell 0 to c =0 at cell 200. The computed results after 6i time steps, 0, 121 time 
steps, x , and 181 times steps. a, are compared with the exact solution -. The initial square-wave 
of amplitude 1.5 from cell 4 to 24 is also shown. (b) Detailed comparison with the exact solution; 
-9 of results obtained using (i) the fourth-order method, 91 steps with O< c< 1, 0, (ii) the 
SHASTA method, 181 steps with 0 < c < 0.5, x , (iii) the marching method, 23 steps with 0 < c < 4, A. 
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3.2. Numerical Results 

We compare the solutions obtained with the Phoenical LPE SHASTA algorithm 
and the fourth-order algorithm with the exact solution for the square-wave test [6] 
in Fig. 1 and for the semi-circle test [6] in Fig. 2. In all cases shown the velocity 
decreases linearly from a value at cell 0 which determines the maximum value of c, 
c max, to zero at cell 200. For the SHASTA method c,,, = 0.5, for the fourth-order 
method cmaX = 1 to demonstrate the tri-diagonal matrix inversion method of 
solution, and then c,,, = 4 to demonstrate the performance of the recursion method 
of solution for c > 1. Figures la and 2a show the movement and distortion of the 
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FIG. 2. The semi-circle test with a decreasing velocity field: (a) The fourth-order method with 
conditions and symbols as for Fig. la. (b) Detailed comparison with the exact solution with conditions 
and symbols as for Fig. lb. 



498 STEINLE, MORROW, AND ROBERTS 

TABLE I 

The Average Error (A.E.) Values and Computational Times for the Square-Wave 
and Semi-Circular Wave Tests in a Decreasing Velocity Field 

Method 

LPE SHASTA 

4th order 

Range of No. of A.E. A.E. CPU time 
c steps (square-wave) (semi-circle) (s) 

0.5...0 181 0.0596 0.2053 30 

0.5...0 181 0.0454 0.1941 44 
l...O 91 0.0410 0.1888 22 
2...0 46 0.0403 0.2382 I1 
3...0 31 0.0509 0.23 10 8 
4...0 23 0.0708 0.2383 I 

waveforms with time. Figures lb and 2b compare in detail the solutions after the 
same time has elapsed, which is after 181 time steps for the SHASTA method, 91 
time steps for the fourth-order method with c 6 1, and only 23 time steps for the 
fourth-order method using the recursion relation [6] for c > 1. In Table I the com- 
putational times and the average error (A.E.) are given for each test. The average 
error is computed from the formula A.E. = &C, (p: - pJ, where the range of j 
covers all regions where the computed p; and the exact solution pj+ differ. Note that 
A.E. values are only relative, and the square-wave results must not be compared 
with the semi-circle results. 

From the square-wave propagation results shown in Fig. lb it is clear that the 
implicit solution for cd 1 is less diffused than the SHASTA solution with the 
density change more sharply defined, as reflected in the A.E. values of Table I, and 
takes less computational time, also shown in Table I. For c > 1 the fourth-order 
method is less accurate than the SHASTA method, but gives quite acceptable 
results with all the monotonic non-oscillatory properties of an F.C.T. method, in 
less than a quarter of the time and in one eighth the number of time steps. Similar 
comments apply to semi-circle tests; however, it should be noted that the clipping 
action of the flux-limiter has a modifying effect on the results for this test, 
particularly as the profiles become very sharp. 

TABLE 11 

The average Error (A.E.) Values and Computational Times 
for the Semi-Circular Wave Tests in an Increasing Velocity Field 

Method 

LPE SHASTA 

4th order 

Range of 
c 

0...0.5 

0...0.5 
O...l 
0...2 
0...4 

No. of A.E. CPU time 
steps (semi-circle) (s) 

81 0.1145 14 

81 0.1091 20 
41 0.1094 10 
21 0.1300 5 
11 0.1566 3 
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Tests were also made with linearly increasing velocity fields and the results of 
these tests are summarised in Table II. The level of error is less since the wave 
profiles expand in this case. The relative accuracy of each method is similar to that 
described above for the decreasing velocity field. 

4. SUMMARY 

We have developed an analytic method of describing the distortion of an 
arbitrary waveform advecting in the presence of a linearly varying non-uniform 
velocity field. This development is important since transport algorithms have been 
used in highly non-uniform velocity conditions in numerous gas-discharge applica- 
tions without any analytic tests of their behaviour under these conditions. 

The analytic method has been applied in the case of square- and semi-circular 
waveforms to test the accuracy of the Phoenical LPE SHASTA algorithm and the 
newly developed implicit fourth-order FCT algorithm. Velocity distributions both 
linearly increasing and linearly decreasing with distance are tested and the results 
are generally very good. The. fourth-order implicit method is generally more 
accurate than the SHASTA method, and for c > 1 comparable accuracy can be 
obtained with a threefold decrease in the computational time required over the 
SHASTA method. Of even greater importance in some cases is the reduction in the 
total number of time steps required for a given order of accuracy. For example, in 
gas discharge calculations the solution of Poisson’s equation at each time step takes 
more time than the solution of the transport equations. 
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